we know that
the volume of a solid oblique pyramid is equal to

where
B is the area of the base
h is the height of the pyramid
in this problem we have that
B is a square

where
<u>
</u>
so


substitute in the formula of volume
![V=\frac{1}{3}*x^{2}*(x+2)\\ \\V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%2Ax%5E%7B2%7D%2A%28x%2B2%29%5C%5C%20%5C%5CV%3D%5Cfrac%7B1%7D%7B3%7D%2A%5Bx%5E%7B3%7D%20%2B2x%5E%7B2%7D%5D%5C%20cm%5E%7B3%7D)
therefore
<u>the answer is</u>
![V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%2A%5Bx%5E%7B3%7D%20%2B2x%5E%7B2%7D%5D%5C%20cm%5E%7B3%7D)
Answer:
6.2 and 6.4
Step-by-step explanation:
I am right please like
we know that
Imaginary roots will come in pairs, and so the degree must be even.
therefore
the answer is
options


Answer:
P ( 37 < x < 41) = P(-0.5 < Z < 1.5) = 0.6247
Step-by-step explanation:
We know mean u = 38 standard dev. s = 2
We want P ( 37 < x < 41)
so
P( (37 - 38) / 2 < Z) = P(-0.5 < Z)
P( Z < (41 - 38)/2 ) = P( Z < 1.5)
Find P(Z < -0.5) = 0.3085
Find P(Z > 1.5) = 0.0668
so P(-0.5 < Z < 1.5) = 1 - P(Z < -0.5) - P(Z > 1.5)
P(-0.5 < Z < 1.5) = 1 - 0.3085 - 0.0668
P(-0.5 < Z < 1.5) = 0.6247
P ( 37 < x < 41) = P(-0.5 < Z < 1.5) = 0.6247
0.12 x 0.1 = 0.012 I think