Answer:
125/6(In(x-25)) - 5/6(In(x+5))+C
Step-by-step explanation:
∫x2/x1−20x2−125dx
Should be
∫x²/(x²−20x−125)dx
First of all let's factorize the denominator.
x²−20x−125= x²+5x-25x-125
x²−20x−125= x(x+5) -25(x+5)
x²−20x−125= (x-25)(x+5)
∫x²/(x²−20x−125)dx= ∫x²/((x-25)(x+5))dx
x²/(x²−20x−125) =x²/((x-25)(x+5))
x²/((x-25)(x+5))= a/(x-25) +b/(x+5)
x²/= a(x+5) + b(x-25)
Let x=25
625 = a30
a= 625/30
a= 125/6
Let x= -5
25 = -30b
b= 25/-30
b= -5/6
x²/((x-25)(x+5))= 125/6(x-25) -5/6(x+5)
∫x²/(x²−20x−125)dx
=∫125/6(x-25) -∫5/6(x+5) Dx
= 125/6(In(x-25)) - 5/6(In(x+5))+C
Answer:
Step-by-step explanation:
Sum of all angles of triangle = 180°
6p + 6p + 3 p = 180
15p = 180
p = 180/15
p = 12
Angles are:
6p = 6*12 = 72°
3p = 3*12 = 36°
Angles are: 72°, 72° , 36°
Answer:
E’ is (11,-1)
Step-by-step explanation:
Here, we want to get the new coordinates of E
The translation is 4 units right ( add 4 to x-value) and 3 units down ( subtract 3 from y-value)
So for E, we have
(7 + 4, 2-3)
= (11, -1)
6god is watching from views
Answer:
jdukfufuufkfjkrkhjjfjctyh es 636 díajfjkrkfjkfjehjjrs en el 36 minutos