Explanation:
The chemical reaction given in the question is as follows -
MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)
NO₃⁻ (aq) + 4H⁺ (aq) + 3e⁻ → NO (g) + 2H₂O (l)
As we know , the value for reduction potential are -
Mn²⁺ = + 1.51 V
NO₃⁻ = +0.96 V
From , the data given above , the value of the reduction potential of NO₃⁻ is less than the reduction potential of Mn²⁺ .
Hence ,
NO₃⁻ can not oxidize Mn²⁺ .
Heating a substance causes molecules to speed up and spread slightly further apart, occupying a larger volume that results in a decrease in density. Cooling a substance causes molecules to slow down and get slightly closer together, occupying a smaller volume that results in an increase in density.
From: www.middleschoolchemistry.com
Ion-dipole forces
H2O has hydrogen bonding, which is a form of dipole-dipole forces, and NO3- is an ion, so the intermolecular attraction is ion-dipole.
Answer:
Molality of the solution = 0.7294 M
Explanation:
Given:
Number of magnesium arsenate = 1.24 moles
Mass of solution = 1.74 kg
Find:
Molality of the solution
Computation:
Molality of the solution = Mole of solute / Mass of solution = 1.74 kg
Molality of the solution = 1.24 / 1.7
Molality of the solution = 0.7294 M