Using the asymptote concept, it is found that:
- The vertical asymptote is of x = 25.
- The horizontal asymptote is of y = 5.
- Considering the horizontal asymptote, it is found that the end behavior of the function is that it tends to y = 5 to the left and to the right of the graph.
<h3>What are the asymptotes of a function f(x)?</h3>
- The vertical asymptotes are the values of x which are outside the domain, which in a fraction are the zeroes of the denominator.
- The horizontal asymptote is the value of f(x) as x goes to infinity, as long as this value is different of infinity.
In this problem, the function is:

Considering the denominator, the vertical asymptote is:
x - 25 = 0 -> x = 25.
The horizontal asymptote is found as follows:

Hence the end behavior of the function is that it tends to y = 5 to the left and to the right of the graph.
More can be learned about asymptotes and end behavior at brainly.com/question/28037814
#SPJ1
4<p<5
(4,5)
Open circles, not shaded.
Hope this helped!
Answer:
All of the above
Step-by-step explanation:
dy/dt = y/3 (18 − y)
0 = y/3 (18 − y)
y = 0 or 18
d²y/dt² = y/3 (-dy/dt) + (1/3 dy/dt) (18 − y)
d²y/dt² = dy/dt (-y/3 + 6 − y/3)
d²y/dt² = dy/dt (6 − 2y/3)
d²y/dt² = y/3 (18 − y) (6 − 2y/3)
0 = y/3 (18 − y) (6 − 2y/3)
y = 0, 9, 18
y" = 0 at y = 9 and changes signs from + to -, so y' is a maximum at y = 9.
y' and y" = 0 at y = 0 and y = 18, so those are both asymptotes / limiting values.
Answer:
Phil is 23
Step-by-step explanation:
Add 14 to 9 and you get 23. So then you subtract 9 from 23