8 is in the ones place so 8 ones.
Area of the parabolic region = Integral of [a^2 - x^2 ]dx | from - a to a =
(a^2)x - (x^3)/3 | from - a to a = (a^2)(a) - (a^3)/3 - (a^2)(-a) + (-a^3)/3 =
= 2a^3 - 2(a^3)/3 = [4/3](a^3)
Area of the triangle = [1/2]base*height = [1/2](2a)(a)^2 = <span>a^3
ratio area of the triangle / area of the parabolic region = a^3 / {[4/3](a^3)} =
Limit of </span><span><span>a^3 / {[4/3](a^3)} </span>as a -> 0 = 1 /(4/3) = 4/3
</span>
The linear equation that is perpendicular to the line x+3y=21 is:
y = 3*x - 6
<h3>How to find the equation of the line?</h3>
A general line in the slope-intercept form is written as:
y = m*x + b
Where m is the slope and b is the y-intercept.
Two linear equations are perpendicular if the product between the two slopes is equal to -1.
Rewriting the given line we can get:
x +3y = 21
3y = 21 - x
y = 21/3 - x/3
y = (-1/3)*x + 21/3
Then the slope is (-1/3), if our line is perpendicular to this one, then:
m*(-1/3) = -1
m = 3
our line is:
y = 3*x + b
To find the value of b, we use the fact that our line passes through (1, - 3)
-3 = 3*1 + b
-3 - 3 = b
-6 = b
The line is y = 3*x - 6
Learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:
(4x² + 24x + 35) in²
Step-by-step explanation:
(5+2x)(7+2x)
35 + 14x + 10x + 4x²
4x² + 24x + 35