Answer:
Explanation:
1) Chemical formula of sodium carbonate: <em>Na₂CO₃</em>
2) Ratio of carbon atoms:
- The number of atoms of C in the unit formula Na₂CO₃ is the subscript for the atom, which is 1 (since it is not written).
Hence, the ratio is 1 C atom / 1 Na₂CO₃ unit formula.
This is, there is 1 atom of carbon per each unit formula of sodium carbonate.
3) Calculate the number of moles in 1.773 × 10⁷ carbon atoms
- Divide by Avogadro's number: 6.022 × 10²³ atoms / mol
- number C moles = 1.773 × 10⁷ atoms / (6.022 × 10²³ atoms/mol)
- number C moles = 2.941 × 10⁻¹⁷ mol
Since, the ratio is 1: 1, the number of moles of sodium carbonate is the same number of moles of carbon atoms.
1 mole = 6.22 x 10^23 molecules (Avogadro's number)
15 moles x (6.22 x 10^23) = 9.33 x 10^24 atoms
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
Answer : (C) Hafnium is the most likely identity of the given substance.
Solution : Given,
Mass of given substance (m) = 46.9 g
Volume of given substance (V) = 3.5 
First, find the Density of given substance.
Formula used :

Now,put all the values in this formula, we get
= 13.4 g/
So, we conclude that the density of given substance (13.4 g/
) is approximately equal to the density of Mercury and Hafnium (13.53 and 13.31 g/
respectively).
According to the question the substance is solid at room temperature but Mercury is liquid at room temperature. So, Mercury is not identical to the given substance.
Another element i.e, Hafnium is the element whose density is approximately equal to the given substance and also solid at room temperature. And we know that the melting point of solid is high.
So, Hafnium is the most likely element which is the identity of the given substance.