Ionic bond is a chemical bond formed by the complete transfer of electrons between two atoms. The atom that loses electrons gains a positive charge (cation) and that which accepts electrons gains a negative charge (anion). Now, electronegativity is a parameter that measures the tendency of an atom to accept electrons. In the context of ionic bonding, two elements which show a significant difference in their electronegativity values form ionic bonds.
In the given examples, the difference in electronegativity is greatest between K and Br i.e. 0.8 and 2.8 respectively with a difference of 2.0. This also makes sense since K and Br are on the extreme ends of the periodic table. Hence, potassium with a valence electron configuration of 4s1 will lose its s electron to Br (4s24p6) and form an ionic molecule K⁺Br⁻
Ans E) potassium and bromine
Answer:
CO(g) + 2H₂(g) → CH₃OH(l)
Explanation:
Carbon monoxide has molecular formula CO, molecular hydrogen has formula H₂, and methanol is CH₃OH.
The reactants are CO and H₂ and the product CH₃OH:
CO(g) + H₂(g) → CH₃OH(l)
To balance the equation, the elements must have the same amount on each side. C and O are balanced, but there is 4H in the product and only 2 in the reactant, so we multiply H₂ for 2:
CO(g) + 2H₂(g) → CH₃OH(l)
And the equation is balanced.