It all depends what theory it is most are supported by really good evidence but they just don't have all the evidence so it can't be proven a fact at that time
Answer:
igneous rock CAN become sedimentary rock through a process called ROCK CYCLE.
Explanation:
Rocks can be defined as solid structures of minerals that are formed naturally over a period of time. They are grouped into three main types which includes the following:
- igneous rock
- sedimentary rocks and
- metamorphic rocks.
Rocks are capable of transforming from one type to another through a process known as rock cycle. There are two forces that brings about this process which includes:
- The internal force : this is the Earth’s internal heat engine, which moves material around in the core and the mantle and leads to slow but significant changes within the crust.
- The external force: this is the the hydrological cycle, which is the movement of water, ice, and air at the surface, and is powered by the sun.
Molten magma cools to form either extrusive igneous rock or intrusive igneous rock. With time they undergo weathering, eroded, transported, and then deposited as sediments which are being compressed and cemented into SEDIMENTARY ROCKS. Again through the above mentioned forces, different kinds of rocks are either uplifted, to be re-eroded, or buried deeper within the crust where they are heated up, squeezed, and changed into METAMORPHIC ROCK.
Therefore the material in this sedimentary rock found in Rhombus planet used to be in igneous rock deep in Rhombus's interior due to continuous rock cycling on the planet. I hope this helps, thanks.
Answer:
True
Explanation:
Because Carbon is the primary component of macromolecules, including proteins, lipids, nucleic acids, and carbohydrates.
For the chemical reactiom to be at equilibrium:
1- The rate of forward reaction must be equal to the rate of the reverse reaction.
2- The mass of EACH element must be equal before and after the reaction (no NET change in mass), otherwise the equilibrium will shift.
Important note: you need to check the mass of each element before and after the reaction (i.e, reactants side and products side) and the not the mass of the system as a whole. This is because the mass of the whole system will be preserved whether the system is at equilibrium or not (this is the fundamental law of mass conservation)
H
Since K stands for potassium, C stands for Carbon and O stands for Oxygen