Answer:
Opposition of passing a electric circuit
use the formula: v^2=(3kT)/m
Where:
<em>v is the velocity of a molecule</em>
<em>k is the Boltzmann constant (1.38064852e-23 J/K)</em>
<em>T is the temperature of the molecule in the air</em>
<em>m is the mass of the molecule</em>
For an H2 molecule at 20.0°C (293 K):
v^2 = 3 × 1.38e-23 J/K × 293 K / (2.00 u × 1.66e-27 kg/u)
v^2 = 3.65e+6 m^2/s^2
v = 1.91e+3 m/s
For an O2 molecule at same temp.:
v^2 = 3 × 1.38e-23 J/K × 293 K / (32.00 u × 1.66e-27 kg/u)
v^2 = 2.28e+5 m^2/s^2
v = 478 m/s
Therefore, the ratio of H2:O2 velocities is:
1.91e+3 / 478 = 4.00
Given that,
Mass of object, m = 55 kg
Mechanical energy of the object, M = 4306 J
Potential energy, P = 2940 J
We know that the mechanical energy is the sum of kinetic and potential energy such that,
Mechanical energy = kinetic energy + potential energy

Kinetic energy is given by :
v is velocity of object

So, the velocity of object is 7.04 m/s.
<span>a. The magnitude of the vector is doubled as well.
Let's say we have a 2-dimensional vector with components x and y.
It's magnitude lâ‚ is given by:
lâ‚ = âš(x² + y²)
If we double the components x and y, the new magnitude lâ‚‚ is:
lâ‚‚ = âš((2x)² + (2y²))
With a bit of algebra...
lâ‚‚ = âš(4x² + 4y²)
lâ‚‚ = âš4(x² + y²)
lâ‚‚ = 2âš(x² + y²)
We can write the new magnitude lâ‚‚ in terms of the old magnitude lâ‚.
lâ‚‚ = 2lâ‚
Therefore, the new magnitude is double the old one.
It should be clear that this relationship applies to 3D (and 1D) vectors as well.
b. The direction angle is unchanged.
The direction angle θ₠for a 2-dimensional vector is given by:
θ₠= arctan(y / x)
If we double both components, we get:
θ₂ = arctan(2y / 2x)
θ₂ = arctan(y / x)
θ₂ = θâ‚
The new direction angle is the same as the old one.</span>
Answer:
because carbon 14 has only a short half life, rather than other elements with longer half lives.
Explanation:
✨science✨