Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
Answer:
Vi = 5 m/s
Explanation:
let (a) acceleration = 0.75 m/s²
(t) time = 20 seconds
Vf = final velocity = 72 km/hr (convert to m/s to units consistency = 20 m/s)
find Initial velocity (Vi)
Vf - Vi
a = -----------
t
Vi = Vf - (a * t) = 20 - (0.75 * 20)
Vi = 5 m/s
Answer: 2, the nuclear strong force drops to practically nothing at large distances.
Explanation: The protons and neutrons in the nucleus share subatomic particles called pions. This exchange is what keeps the protons and neutrons stuck together in the nucleus. Despite the strong force being the strongest force, it has a very small range. This is because pions have very short lifespans. So, the strong force would have literally no effect at large distances.
Hope that helped! :)
Answer:
Explanation:
Displacement vector along x axes = 4.5 - 2.5 = 2 m
Displacement vector along y axes = 3 - 2 = 1 m
Displacement vector along z axis = 3.5- 4 = - 0.5 m
Displacement vector = 2 i + j - 0.5 k m