Answer:
Part a)

Part b)

Explanation:
Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have

here we also use angular momentum conservation
so we have

also we know that the collision is elastic collision so we have

so we have

also we know

also we know

so we have


now we have


Part b)
Now we know that speed of the ball after collision is given as

so it is given as

Answer:
1.#potential energy = PE, m = mass in kg, g = force of gravity, h= vertical height above the ground. ** means to the power of ie exponent. * means multiply.
PE = mgh
300 = m(10)(15)
m = 300/(10)(15)
m= 2kg
2. KE = 1/2 mv**2
= 1/2(50)(50)**2
= 2500 joules
Explanation
Is as in solution
Answer:
It changes at a rate of 4/3 meter per second
Explanation:
In the given figure below we have
Solving for Y given
we get

Explanation:
The given data is as follows.
Angular velocity (
) = 2.23 rps
Distance from the center (R) = 0.379 m
First, we will convert revolutions per second into radian per second as follows.
= 2.23 revolutions per second
=
= 14.01 rad/s
Now, tangential speed will be calculated as follows.
Tangential speed, v =
= 0.379 x 14.01
= 5.31 m/s
Thus, we can conclude that the tack's tangential speed is 5.31 m/s.