1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
12

What is the correct justification for the first step in solving this equation? 3(x - 4) + 1 = 12x

Mathematics
2 answers:
Y_Kistochka [10]3 years ago
7 0

Answer:

Solve the first part in Parenthese

Step-by-step explanation:

3(X-4)

3x-12+1=12x

         -1   -1

3x-11-12=12x

        -12 -12

3x-11=0x

    -11  -11

3x= -11x

/3      /3

x= -11/9

dybincka [34]3 years ago
5 0

Answer:

x = -11/9

Step-by-step explanation:

3(x-4) + 1 = 12x

Step 1: Use distributive property

3*x - 3*4 + 1 = 12x

3x - 12 + 1 = 12x

Step 2: Combine like terms

3x - 11 = 12x

Step 3: Subtract '3x' from both sides

-11 = 12x - 3x

-11 = 9x

Step 4: Divide both sides by 9

-11/9 = x

You might be interested in
What is the estimate value of 102.3 divided by 4.7
Luda [366]

Answer:

20

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Which property makes a rectangle a special type of parallelogram?
igor_vitrenko [27]
<span>The opposite sides are parallel.</span>
4 0
4 years ago
Read 2 more answers
Please help, whats (-2.1) x (-1.4)?
Fed [463]

Two negatives make a positive so your answer is 2.94

8 0
3 years ago
Read 2 more answers
Roberto debe leer un libro que contiene 340 páginas en 4 días por lo cual planea la siguiente distribución: el primer día 1/5 de
Finger [1]

Answer:

170 pages

Step-by-step explanation:

Roberto must read a book that contains 340 pages in 4 days for which he plans the following distribution

The number of pages he read for the first day :

The first day 1/5 of the pages of the book

This is calculated as:

1/5 × 340 pages

= 68 pages

For the second day:

The second 1/4 of what remains to be read

The number of pages remaining after the first day is calculated as:

340 - 68 = 272 pages

Hence, the number of pages read on the second day is

1/4 × 272 pages

= 68 pages

For the third day

One the third day, 1/6 of the rest was read.

The number of pages remaining after the first day is calculated as:

272 - 68 = 204 pages

Hence, the number of pages read on the third day is

1/6 × 204 pages

= 34 pages

Therefore, the number of pages Roberto has to read on the fourth day is calculated as:

340 pages - (68 + 68 + 34)pages

340 pages - 170 pages

= 170 pages

7 0
3 years ago
Consider a parent population with mean 75 and a standard deviation 7. The population doesn’t appear to have extreme skewness or
Aleks04 [339]

Answer:

a) \bar X \sim N(\mu=375, \sigma={\bar X}=\frac{7}{\sqrt{40}}=1.107)

b) Since the sample size is large enough n>30 and the original distribution for the random variable X  doesn’t appear to have extreme skewness or outliers, the distribution for the sample mean would be bell shaped and symmetrical.

c) P(\bar X \leq 77)=P(Z

d) See figure attached

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".

Let X the random variable of interest. We know from the problem that the distribution for the random variable X is given by:

E(X) = 75

sd(X) = 7

We take a sample of n=40 . That represent the sample size

Part a

From the central limit theorem we know that the distribution for the sample mean \bar X is also normal and is given by:

\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})

\bar X \sim N(\mu=375, \sigma={\bar X}=\frac{7}{\sqrt{40}}=1.107)

Part b

Since the sample size is large enough n>30 and the original distribution for the random variable X  doesn’t appear to have extreme skewness or outliers, the distribution for the sample mean would be bell shaped and symmetrical.

Part c

In order to answer this question we can use the z score in order to find the probabilities, the formula given by:

z=\frac{\bar X- \mu}{\frac{\sigma}{\sqrt{n}}}

And we want to find this probability:

P(\bar X \leq 77)=P(Z

We can us the following excel code: "=NORM.DIST(1.807,0,1,TRUE)"

Part d

See the figure attached.

8 0
3 years ago
Other questions:
  • What is the equation of the circle with center (-3, 5) and radius 1.2?
    11·1 answer
  • Complete each number pattern
    12·1 answer
  • Which real world situation cannot be represented by X +8 equals X 2+4
    14·1 answer
  • I WILL GIVE BRAINLIEST
    5·1 answer
  • 3(2 x – 5) = 4( x + 3)
    11·2 answers
  • 3/4 times what equals 12
    9·2 answers
  • Help me please!!! I don’t understand nothing
    5·2 answers
  • The quantities x and y are proportional. Y 3 30 10 100 16 160 Find the constant of proportionality (r) in the equation y = rx.
    7·2 answers
  • A line segment AD, contains points B &amp; C such that C is between A and D, and B is between A and C. If AB = 6, BD = 23, and A
    14·1 answer
  • E=mc2square, for m I have my math class next please help
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!