<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=
Answer:
9.15 atm
Explanation:
Ideal gas equation of state PV=nRT
P in hPa, V in L, n in mol, R is a constant which is 83.1 hpa*L/mol*k, T in kelvin.
Plug in all the number, and we will get:
P*6.21=2.02*83.1*343
P =9271.6(in hpa)=9.15 atm
ibsibjbsi has a lot to do about it but it's
Answer:
0.19 g
Explanation:
Step 1: Given data
Volume of hydrogen at standard temperature and pressure (STP): 2.1 L
Step 2: Calculate the moles corresponding to 2.1 L of hydrogen at STP
At STP (273.15 K and 1 atm), 1 mole of hydrogen has a volume of 22.4 L if we treat it as an ideal gas.
2.1 L × 1 mol/22.4 L = 0.094 mol
Step 3: Calculate the mass corresponding to 0.094 moles of hydrogen
The molar mass of hydrogen is 2.02 g/mol.
0.094 mol × 2.02 g/mol = 0.19 g