Answer:
A and B
Explanation:Ap3x approved :)
The unit of mass is 'Kilogram' which is written as 'kg' and volume, v = 10 L.
<h3>Equation :</h3>
To calculate the volume
Use formula,
density = mass / volume
density = 100 kg/L
mass = 1000 kg
volume = mass / density
v = 1000/100
v = 10 L
<h3>What is density mass?</h3>
A substance, material, or object's mass density is a measure of how much mass (or how many particles) it has in relation to the volume it occupies.
To know more about volume :
brainly.com/question/1578538
#SPJ9
I understand the question you are looking for :
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First what are the mass units? Secondly, what is the volume?
Answer:
Explanation:
A bronsted lowry acid just means that it donates a proton.
An arrhenius acid dissolves in water to donate a proton
the only difference is that an arrhenius acid must dissolve in water but it still donates a proton so it is considered a bronsted lowry acid
The sample response given in the question is right.
To find the answer, we need to know more about the distance and displacement.
<h3>How distance differ from displacement?</h3>
- Displacement is the shortest distance between the initial and final points of a body.
- It is the change in position with a fixed direction.
- Displacement is a vector quantity and can be positive, negative or zero values.
- Distance is the length of actual path of the body between initial and final positions.
- It's a scalar quantity and it can be positive or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
Thus, we can conclude that the given sample response is right.
Learn more about distance here:
brainly.com/question/28124225
#SPJ1
Answer:
his is an example of a first-year chemistry question where you must first convert two of the pressures to the units of the third and add them up, per Dalton’s law of additive pressures. There are three possible answers, one for each of the three pressure units.
1 atm = 760 torr …… torr and mm Hg are the same
1 atm = 101.3 kPa
Dalton’s law:
P(total) = P(O2) + P(N2) + P(CO2)
Explanation:
Gases will assume whatever pressure depending on the equation of state of the mixture (in this case) and the volume htey are contained in. That could be the ideal gas law and simple mixing law, If you are quoting the partial pressures which you call simply “the pressure” of each gas, and that these refer to their values in the present mixture, then yes, we would add them up. The pressures are low enough for the ideal gas law to apply provided the temperature is not extremely low as well .