Twice as much more will the freezing point of water be lowered in beaker a than in beaker b.
<h3>What determines freezing point?</h3>
A liquid's freezing point rises if the intermolecular interactions between its molecules are strong. The freezing point, however, drops if the molecules of inter - molecular are minimal. The process through which a substance transforms from a liquid into a solid is known as freezing.
<h3>How significant is freezing point?</h3>
Freezing points play a big role in occupational safety. A chemical may perhaps turn harmful if held below its freezing point. A critical safety benchmark for assessing the effects of worker exposure to cold environments is the freezing point.
To know more about Freezing point visit:
brainly.com/question/2292439
#SPJ4
Answer is: <span>negative beta decay.
</span>
Nuclear reaction: ¹⁴C → ¹⁴N + e⁻ + νe (electron antineutrino).
<span>In beta minus decay (atomic number Z is increased
by one, from 6 in carbon to 7 in nitrogen) neutron is converted to a proton and
an electron and an electron antineutrino.
</span><span>Beta decay is radioactive decay in which a beta
ray and a neutrino are emitted from an atomic nucleus.</span>
To solve this question, think about which one of these options is a DIRECT effect of sea levels rising.
Choice A: If sea levels rise, they would start to cover up land that's at sea level, areas like beaches or coastal cities for example.
Choice B: Fossil fuels cause global warming. This is about the effects of global warming, not the causes.
Choice C: Not relevant. It doesn't mention alternative energy at all in this.
Choice D: Again, effects, not causes (see Choice B explanation).
The correct answer is... CHOICE A
Answer:
Contributes to the membrane potential.
Explanation:
Sodium-potassium pump: In cellular physiology, a protein which is identified in many cells that helping in to maintain the higher concentration of potassium ions inside than that is in the surrounding medium and maintain the lower concentration of sodium ions inside than that of the surrounding medium.
This unbalanced charge transfer contributes in the separation of charge across the cell membrane. Sodium-potassium pump is known for important contributor to action potential which is produce by nerve cells.