Answer:
- <u><em>1.7 × 10³ kg of ore.</em></u>
Explanation:
Call X the amount of aluminum ore mined to produce 1.0 × 10³ kg the aluminum metal.
Then, taking into account the yield of the reaction (82 % = 0.82) and the percent of aluminun in the ore (71% = 0.71), you can write the following equation:
- X × 71% × 82% = 1.0 × 10³ kg
↑ ↑ ↑ ↑
(mass of ore) (% of Al in the ore) (yield) ( Al metal to obtain)
You must just simplify, solve and compute:
- X = 1,000 / (0.71 × 0.82) = 1,000 / 0.5822 = 1,717.6 Kg
Round to two significant figures; 1,700 kg = 1.7 × 10³ kg of ore ← answer.
Answer:
4 biological membranes.
Explanation:
So in total, your water molecule has to go through your cell membrane, reach the outer membrane of your chloroplast and then through the inner membrane, and then lastly, it has to go through your thylakoid membrane to reach its final destination of the illumine. So in total 4 biological membranes.
Answer: Depending on the data and the patterns, sometimes we can see that pattern in a simple tabular presentation of the data. Other times, it helps to visualize the data in a chart, like a time series, line graph, or scatter plot.
Explanation:
1960 5.91
1970 5.59
1980 4.83
1990 4.05
2000 3.31
2010 2.60
Answer:
310.69K
Explanation:
Given parameters:
Initial temperature T₁ = 292K
Initial pressure P₁ = 1.25atm
Final pressure P₂ = 1.33atm
Unknown:
Final temperature T₂ = ?
Solution
To find the unkown, we need to apply the combined gas law. From the combined gas law, it can be deduced that at constant volume, the pressure of a give mass or mole of gas varies directly with the absolute temperature.
Since the same aerosol can is heated, the volume is constant.
=
Now, we have to make T₂ the subject of the formula:
T₂ =
T₂ =
= 310.69K
Answer:
it is B because if u said A or D it would have been wrong and if u said C u would be going left.
Explanation: