The answer is B. Remain still.
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
Answer:
trigonometry (guessing)
Explanation:
ellipse: is the shape of an orbit : looks like an oval
periapsis : shortest distance between something like the moon and the planet its orbiting around like the earth
parallax is triangulation. like how gps works. looking at a star one day and then looking at it again 6 months later, an astronomer can see a difference in the viewing angle for the star. With trigonometry, the different angles yield a distance. This technique works for stars within about 400 light years of earth
https://science.howstuffworks.com/question224.htm
By comparing the intrinsic brightness to the star's apparent brightness we can calculate the distance of stars
1/r^2 rule states that the apparent brightness of a light source is proportional to the square of its distance.Jan 11, 2022
https://www.space.com/30417-parallax.html
alternative distance measurement for stars used by most astronomers is the parsec. A star with a parallax angle of 1 arcsecond has a distance of 1 parsec, or 1 parsec per arcsecond of parallax, which is about 3.26 light years
blossoms.mit.edu
.
It Is False. Liquid will not expand to fill it's container, while gas will.
Answer:

Explanation:
The magnetic field produced by a current-carrying wire is given by

where
is the vacuum permeability
I is the current
r is the distance from the wire
In this problem we have

r = 1.2 mm = 0.0012 m
So the magnetic field strength is
