Answer:
D)Not enough information
Explanation:
According to Pascal's principle, the pressure exerted on the two pistons is equal:

Pressure is given by the ratio between force F and area A, so we can write

The force exerted on each piston is just equal to the weight of the corresponding mass:
, where m is the mass and g is the gravitational acceleration. So the equation becomes

Now we can rewrite the mass as the product of volume, V, times density, d:

We also know that 
So we can further re-arrange the equation (and simplify g as well):


We are also told that block B has bigger volume than block A:
. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.
A dull knife is actually more dangerous than a sharp one because it forces you, as the chef, to add more pressure while cutting.
<h3>Why a dull knife is more dangerous than sharpen knife?</h3>
As the chef we have cut many things. Chef have to look over all the knifes whether it is sharp or dull and whether it is long or short, et.,. They have various knifes that can be used at various places by giving force and that force can be known to be pressure.
Pressure (symbol: p or P) can be defined as the force that can be applied perpendicular for the straight to the surface of an object which will be per unit area over and there the force is gets distributed.
Pressure formula can be, P = F/A N/m².
Thus, dull knife is more dangerous than the sharp, because of the pressure.
Hence, Option D is the correct answer.
Learn more about the pressure,
brainly.com/question/12977546
#SPJ1
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Answer:
A primitive solid is a 'building block' that you can use to work with in 3D. Rather than extruding or revolving an object, AutoCAD has some basic 3D shape commands at your disposal.
Explanation:
0 Km , Displacement is distance from starting point. Not distance of Journey.