As its charge, proton -a positive charged molecule at the center of an atom- is the opposite of the electron -the particle which is orbiting the center of an atom.
Long straight distance that a person can swim is 5.64 m.
<h3>What is the
Long straight distance?</h3>
The line that runs form one end of the circle to another is called the diameter of the circle. The pool is a circle according to the question and the long straight distance that a person can swim is the same of the diameter of the circular pool.
Now we have;
A = πr^2
A = area of pool
r = radius of pool
r = √A/ π
r = √25/3.142
r = 2.82m
Diameter of the circular pool = 2 r = 2 (2.82 cm) = 5.64 m
Learn more about circle: brainly.com/question/11833983
#SPJ1
Missing parts;
An ad for an above-ground pool states that it is 25 m2. From the ad, you can tell that the pool is a circle. If you swim from one point at the edge of the pool to another, along a straight line, what is the longest distance d you can swim? Express your answer in three significant figures.
Answer:
–735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
Explanation:
The following data were obtained from the question:
Mass (m) of car = 782.10 kg
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Force (F) =?
Next, we shall determine the acceleration of the car. This can be obtained as follow:
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Acceleration (a) =?
a = (v – u) / t
a = (3.61 – 7.60) / 4.23
a = –3.99 / 4.23
a = –0.94 m/s²
Finally, we shall determine the force experienced by the car as shown below:
Mass (m) of car = 782.10 kg
Acceleration (a) = –0.94 m/s²
Force (F) =?
F = ma
F = 782.10 × –0.94
F = –735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 
Answer:
4 Ohms
Explanation
(This is seriously not as hard as it looks :)
You only need two types of calculations:
- replace two resistances, say, R1 and R2, connected in a series by a single one R. In this case the new R is a sum of the two:

- replace two resistances that are connected in parallel. In that case:

I am attaching a drawing showing the process of stepwise replacement of two resistances at a time (am using rectangles to represent a resistance). The left-most image shows the starting point, just a little bit "warped" to see it better. The two resistances (6 Ohm next to each other) are in parallel and are replaced by a single resistance (3 Ohm, see formula above) in the top middle image. Next, the two resistances (9 and 3 Ohm) are nicely in series, so they can be replaced by their sum, which is what happened going to the top right image. Finally we have two resistances in parallel and they can be replaced by a single, final, resistance as shown in the bottom right image. That (4 Ohms) is the <em>equivalent resistance</em> of the original circuit.
Using these two transformations you will be able to solve step by step any problem like this, no matter how complex.