1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
2 years ago
10

The code for puzzle one escape the rooms

Mathematics
1 answer:
Anna35 [415]2 years ago
4 0

Answer:

there Is no question to that cluld you explain. sorry I don't know how to comment.

You might be interested in
Helppppppppppppppppppppppppppppp
Inessa [10]
Divide the volume value by 1000, which is 0.194 .
8 0
2 years ago
Suppose a geyser has a mean time between eruptions of 72 minutes. Let the interval of time between the eruptions be normally dis
nikitadnepr [17]

Answer:

(a) The probability that a randomly selected time interval between eruptions is longer than 82 ​minutes is 0.3336.

(b) The probability that a random sample of 13-time intervals between eruptions has a mean longer than 82 ​minutes is 0.0582.

(c) The probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes is 0.0055.

(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.

(e) The population mean must be more than 72​, since the probability is so low.

Step-by-step explanation:

We are given that a geyser has a mean time between eruptions of 72 minutes.

Also, the interval of time between the eruptions be normally distributed with a standard deviation of 23 minutes.

(a) Let X = <u><em>the interval of time between the eruptions</em></u>

So, X ~ N(\mu=72, \sigma^{2} =23^{2})

The z-score probability distribution for the normal distribution is given by;

                            Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

Now, the probability that a randomly selected time interval between eruptions is longer than 82 ​minutes is given by = P(X > 82 min)

       P(X > 82 min) = P( \frac{X-\mu}{\sigma} > \frac{82-72}{23} ) = P(Z > 0.43) = 1 - P(Z \leq 0.43)

                                                           = 1 - 0.6664 = <u>0.3336</u>

The above probability is calculated by looking at the value of x = 0.43 in the z table which has an area of 0.6664.

(b) Let \bar X = <u><em>sample mean time between the eruptions</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

           n = sample of time intervals = 13

Now, the probability that a random sample of 13 time intervals between eruptions has a mean longer than 82 ​minutes is given by = P(\bar X > 82 min)

       P(\bar X > 82 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{82-72}{\frac{23}{\sqrt{13} } } ) = P(Z > 1.57) = 1 - P(Z \leq 1.57)

                                                           = 1 - 0.9418 = <u>0.0582</u>

The above probability is calculated by looking at the value of x = 1.57 in the z table which has an area of 0.9418.

(c) Let \bar X = <u><em>sample mean time between the eruptions</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

           n = sample of time intervals = 34

Now, the probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes is given by = P(\bar X > 82 min)

       P(\bar X > 82 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{82-72}{\frac{23}{\sqrt{34} } } ) = P(Z > 2.54) = 1 - P(Z \leq 2.54)

                                                           = 1 - 0.9945 = <u>0.0055</u>

The above probability is calculated by looking at the value of x = 2.54 in the z table which has an area of 0.9945.

(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.

(e) If a random sample of 34-time intervals between eruptions has a mean longer than 82 ​minutes, then we conclude that the population mean must be more than 72​, since the probability is so low.

6 0
3 years ago
I need help I don't understand this!!
lidiya [134]
B is 2,2 A is -1,1 c is 2,-1
7 0
3 years ago
Read 2 more answers
What is the percent of decrease on an item that went from $25 to $20?
trasher [3.6K]
$5..................
4 0
3 years ago
Im stuck on this question i need help
Korolek [52]
I think it’s one half 1/2
4 0
3 years ago
Other questions:
  • Please help asap I'll give 20 points
    15·1 answer
  • Find the simple interest for each principle,rate,and time.Round to the hundredths place
    14·1 answer
  • © Performance Task 2
    13·1 answer
  • Algebra graphing question
    11·1 answer
  • 12) 10 + (-2)+1<br>how do i solve this?​
    15·1 answer
  • This is equivalent? TRUE OR FALSE.​
    12·1 answer
  • Evaluate the function g(x) = -2.x2 + 3x – 5 for the input values –2, 0, and 3
    7·2 answers
  • Help I will give brainliest
    12·1 answer
  • PLEASE HELP I'LL GIVE BRAINILLEST PLEASE NO FAKE ANSWERS ITS DUE REALLY SOON :(
    11·2 answers
  • PLEASE HELP I ONLY HAVE 7 MORE MINUTES TO TURN THIS IN
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!