Answer: Sound Energy
Sound Energy
Explanation:The vibrations produced by the ringing bell causes waves of pressure that travel or propagate through the medium that is air. Sound energy is a form of mechanical energy that is generally associated with the motion and position of the ringing bell.
Meaning of life ....
condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death.
Answer:
by doing the test over and over again until you get the right results
Explanation:
Answer:
I. a, c, f and h
II. e
III. b, d, g and i
IV. i
Explanation:
I. Chemical symbols are simple abbreviations used to represent various elements or compound. They consist entire of alphabet.
For the diagram given above, the labelled parts which represent chemical symbol are: a, c, f and h
II. Coefficients are numbers written before the chemical symbol of elements or compound.
For the diagram given above, the labelled part which represent Coefficient is: e
III. Number of atoms of element present in a compound is simply obtained by taking note of the numbers written as subscript in the chemical formula of the compound.
For the diagram given above, the labelled part which represent the number of atoms of the element are: b, d, g and i
IV. When no number is written as subscript in the formula of the element in the compound, it means the element has just 1 atom in the compound.
For the diagram given above, the labelled part which indicates that only 1 atom of the element is present is: i
Answer: Your question is missing below is the question
Question : What is the no-friction needed speed (in m/s ) for these turns?
answer:
20.1 m/s
Explanation:
2.5 mile track
number of turns = 4
length of each turn = 0.25 mile
banked at 9 12'
<u>Determine the no-friction needed speed </u>
First step : calculate the value of R
2πR / 4 = πR / 2
note : πR / 2 = 0.25 mile
∴ R = ( 0.25 * 2 ) / π
= 0.159 mile ≈ 256 m
Finally no-friction needed speed
tan θ = v^2 / gR
∴ v^2 = gR * tan θ
v = √9.81 * 256 * tan(9.2°) = 20.1 m/s