It means that only those who are able to adapt with all conditions they are placed in will be able to live.
Answer:
All of these choices are correct.
Explanation:
A cell can be defined as the fundamental or basic functional, structural and smallest unit of life for all living organisms. Some living organisms are unicellular while others are multicellular in nature.
A unicellular organism refers to a living organism that possess a single-cell while a multicellular organism has many (multiple) cells.
Generally, cells have the ability to independently replicate themselves. In a cell, the "workers" that perform various functions or tasks for the survival of the living organism are referred to as organelles. Some examples of cell organelles in all living organisms such as trees, birds, and bacteria include; nucleus, cytoplasm, cell membrane, golgi apparatus, mitochondria, lysosomes, ribosomes, chromosomes, endoplasmic reticulum, vesicles, cytoskeleton, etc.
Cytoskeleton refers to a structure consisting of filaments and tubules which help to maintain internal organization and support the shape of the cells. It comprises of three (3) main filaments and these includes: actin filaments, intermediate filaments and microtubules.
Generally, there are numerous evidence that cytoskeletal elements have ancient origins and they include all of the aforementioned facts.
The DNA polymerases are enzymes that create DNA molecules by assembling nucleotides, the building blocks of DNA. These enzymes are essential to DNA replication and usually work in pairs to create two identical DNA strands from one original DNA molecule. During this process, DNA polymerase “reads” the existing DNA strands to create two new strands that match the existing ones.
Every time a cell divides, DNA polymerase is required to help duplicate the cell’s DNA, so that a copy of the original DNA molecule can be passed to each of the daughter cells. In this way, genetic information is transmitted from generation to generation.
Before replication can take place, an enzyme called helicase unwinds the DNA molecule from its tightly woven form. This opens up or “unzips” the double stranded DNA to give two single strands of DNA that can be used as templates for replication.
DNA polymerase adds new free nucleotides to the 3’ end of the newly-forming strand, elongating it in a 5’ to 3’ direction. However, DNA polymerase cannot begin the formation of this new chain on its own and can only add nucleotides to a pre-existing 3'-OH group. A primer is therefore needed, at which nucleotides can be added. Primers are usually composed of RNA and DNA bases and the first two bases are always RNA. These primers are made by another enzyme called primase.
Although the function of DNA polymerase is highly accurate, a mistake is made for about one in every billion base pairs copied. The DNA is therefore “proofread” by DNA polymerase after it has been copied so that misplaced base pairs can be corrected. This preserves the integrity of the original DNA strand that is passed onto the daughter cells.

A surface representation of human DNA polymerase β (Pol β), a central enzyme in the base excision repair (BER) pathway. Image Credit: niehs.nih.gov
Structure of DNA polymerase
The structure of DNA polymerase is highly conserved, meaning their catalytic subunits vary very little from one species to another, irrespective of how their domains are structured. This highly conserved structure usually indicates that the cellular functions they perform are crucial and irreplaceable and therefore require rigid maintenance to ensure their evolutionary advantage.
A common use of carbohydrate is to provide energy for plants, animals and human.