Answer:
Step-by-step explanation:
So in this example we'll be using the difference of squares which essentially states that:
or another way to think of it would be:
. So in this example you'll notice both terms are perfect squares. in fact x^n is a perfect square as long as n is even. This is because if it's even it can be split into two groups evenly for example, in this case we have x^8. so the square root is x^4 because you can split this up into (x * x * x * x) * (x * x * x * x) = x^8. Two groups with equal value multiplying to get x^8, that's what the square root is. So using these we can rewrite the equation as:

Now in this case you'll notice the degree is still even (it's 4) and the 4 is also a perfect square, and it's a difference of squares in one of the factors, so it can further be rewritten:

So completely factored form is: 
I'm assuming that's considered completely factored but you can technically factor it further. While the identity difference of squares technically only applies to difference of squares, it can also be used on the sum of squares, but you need to use imaginary numbers. Because
. and in this case a=x^2 and b=-4. So rewriting it as the difference of squares becomes:
just something that might be useful in some cases.
Answer: 1.1
1.01 x 1.1 = 1.111
I hope this is good enough:
<span>The number is 470, 000
To explain further:
An example is
14,494 </span>
<span>To round off the height value to the nearest thousand we can use the expanded from to clarity the position of numbers which is: </span>
<span>10, 000 = ten thousand </span>
<span>4, 000 = thousands </span>
<span>400 = hundreds </span>
<span>90 = tens </span>
<span>4 = ones </span>
<span>Here we can notice than four thousand is the value where the nearest thousands is placed. Hence we can round off the number of 14, 494 into 14, 000. Notice 0-4 rounding off rules.<span>
</span></span>
With an inequality you have to be careful because you never know when you are going to do the wrong steps in the equation