The answer is C, because wind turbines are used to produce electricity, and it's also the most safest way--but they are expensive.
Answer: B2H6 (g) + 3O2 (g) → B2O3 (s) + 3H2O (g) (ΔH = -2035 kJ/mol) 3H2O (g) → 3H2O (l) (ΔH = -132 kJ/mol) 3H2O (l) → 3H2 (g) + (3/2) O2 (g) (ΔH = 858 kJ/mol)
Explanation: ??
The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.
Answer:
2Ag(s) + Cu^2+(aq) ----------> 2Ag^+(aq) + Cu(s)
Explanation:
Ag(s)/Ag^+ (aq) is the anode as shown while Cu^2+(aq)/Cu^2(s) is the cathode.
E°cell= E°cathode -E°anode= 0.34 -0.80= -0.5V
The cell is not spontaneous as written because E°cell is negative. This implies that the electrodes of the cell must be interchanged to make the cell spontaneous.
Answer:
V₂ → 106.6 mL
Explanation:
We apply the Ideal Gases Law to solve the problem. For the two situations:
P . V = n . R . T
Moles are still the same so → P. V / R. T = n
As R is a constant, the formula to solve this is: P . V / T
P₁ . V₁ / T₁ = P₂ .V₂ / T₂ Let's replace data:
(1.20 atm . 73mL) / 112°C = (0.55 atm . V₂) / 75°C
((87.6 mL.atm) / 112°C) . 75°C = 0.55 atm . V₂
58.66 mL.atm = 0.55 atm . V₂
58.66 mL.atm / 0.55 atm = V₂ → 106.6 mL