In the electrolytic cell, depending on the polarity of the battery, either a more vigorous reaction (though the same as the voltaic cell) would occur, or the reverse would.
Answer:
Depends how much water and the temperature of the water. To heat 1 mL of water by 1 degree C 1 cal of energy (4.184 Joules) is required. Assuming that the water is at 25 degrees C, to boil one litre (liter) of water you would require 75,000 cal or 313.8 kJ.
Answer:
group 1, 2 and 3 tend to get rid of electrons and start to form compounds with groups 7, 6, and 5.
Explanation:
Answer : The value of
for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
![\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5B2mole%5Ctimes%20%28-242kJ%2Fmol%29%2B2mole%5Ctimes%20%28-296.8kJ%2Fmol%29%7D%5D-%5B2mole%5Ctimes%20%28-21kJ%2Fmol%29%2B3mole%5Ctimes%20%280kJ%2Fmol%29%5D)

conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction
.

![\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28O_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28189J%2FK.mol%29%2B2mole%5Ctimes%20%28248J%2FK.mol%29%7D%5D-%5B2mole%5Ctimes%20%28206J%2FK.mol%29%2B3mole%5Ctimes%20%28205J%2FK.mol%29%5D)

Now we have to calculate the Gibbs free energy of reaction
.
As we know that,

At room temperature, the temperature is 500 K.


Therefore, the value of
for the reaction is -959.1 kJ