Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Answer:
2NO(g) + O2(g) ---> 2NO2(g)
Explanation:
The mechanism for this reaction involves two elementary reactions in which both are bimolecular as shown below;
NO(g) +O2(g) ----> NO2(g) + O(g)
NO(g) + O(g) ----> NO2(g)
Hence overall balanced reaction equation;
2NO(g) + O2(g) ---> 2NO2(g)
Answer:
21.8 grams.
Explanation:
Molar mass data from a modern periodic table:
How many moles of MgO will be produced if Mg is the limiting reactant?
Number of moles of Mg:
.
The ratio between the coefficient of Mg and that of MgO is 2:2. Two moles of Mg will make two moles of MgO. 0.670644 moles of MgO will be produced if Mg is the limiting reactant.
How many moles of MgO will be produced if O₂ is the limiting reactant?
Number of moles of O₂:
.
The ratio between the coefficient of O₂ and that of MgO is 1:2. One mole of O₂ will make two moles of MgO.
of MgO will be produced if O₂ is in excess.
How many moles of MgO will be produced?
0.541284 is smaller than 0.670644. Only 0.541284 moles of MgO will be produced since O₂ will run out before all 16.3 grams of Mg is consumed.
What's the mass of 0.541284 moles of MgO?
Formula mass of MgO:
.
Mass of 0.541284 moles of MgO:
.
The correct answer of the given question above would be FLAGELLA. The structure that makes it possible for some kinds of prokaryotic cells to move around is the FLAGELLA. Prokaryotic cell is one of the types of cells. The other type is the Eukaryotic cell. This cell is found in two Kingdoms of life which are Archaea and Bacteria. Hope this answer helps.