Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.
The protons inside an atoms nucleus help bind the nucleus together. They also attract the negatively charged electons
Answer: The balance of the reaction shifts toward the endothermic reaction.
Explanation:
An ENDOTHERMIC REACTION requires input of HEAT ENERGY to drive it FORWARD from reactants, unto completion of products.
So, on increasing the temperature (available heat) the REVERSIBLE REACTION favors the shifts towards the endothermic reaction
Answer:
plum pudding model .
Explanation:
the electrons were 'like plums embedded in a pudding'. Also called the Raisin Bread Model.