Empirical formula is the simplest ratio of components making up a compound.
The percentage composition of each element has been given
therefore the mass present of each element in 100 g of compound is
B N H
mass 40.28 g 52.20 g 7.53 g
number of moles
40.28 g / 11 g/mol 52.20 g / 14 g/mol 7.53 g / 1 g/mol
= 3.662 mol = 3.729 mol = 7.53 mol
divide the number of moles by the least number of moles, that is 3.662
3.662 / 3.662 3.729 / 3.662 7.53 / 3.662
= 1.000 = 1.018 = 2.056
the ratio of the elements after rounding off to the nearest whole number is
B : N : H = 1 : 1 : 2
therefore empirical formula for the compound is B₁N₁H₂
that can be written as BNH₂
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
Answer:
It's an open system, tranfering heat through a rigid, diathermal wall and matter through an imaginary and permeable wall, and it is not at steady state.
Explanation:
- An <em>open system</em> is that that interacts with its surroundings exchanging energy and matter. In an open pan with boiling water you have an open system because steam (matter) is leaving the system, as well as heat (energy) through the pan/stove.
- A<em> boundary</em> is what separates the system from its surroundings, there are many types of boundaries, based on how they transfer energy they can be diathermal (conducting heat) or adiabatic (insulating), on their rigidity they can be rigid, flexible, imaginary or movable and based on their permeability. For the system described we have an imaginary boundary on top that is also permeable allowing matter to go out or in the system, and another wall (the stove/pan itself that is rigid and impermeable avoiding the loss of matter and diathermal, allowing the conduction of heat.
- It is said that a system is at a<em> steady state</em> when the variables that define that system remain constant over time. In an open pan, you can't fully control those variables, you'll have matter and energy scaping from it with no way to regulate it.
I hope you find interesting and useful this information! good luck!
yes
Explanation:
the volume also decrease. as particles are removed from the space the gas is in, there is a decrease in the number of collisions.
A. experiment 1 i believe its the best answer