Answer:
The new concentration is 0.125 M.
Explanation:
Given data:
Initial volume V₁ = 125.0 mL
Initial molarity M₁ = 0.150 M
New volume V₂ = 25 mL +125 mL = 150 mL
New concentration M₂ = ?
Solution:
M₁V₁ = M₂V₂
0.150 M × 125 mL = M₂ × 150 mL
M₂ = 0.150 M × 125 mL / 150mL
M₂ = 18.75 M.mL/150 mL
M₂ = 0.125 M
The new concentration is 0.125 M.
Answer:
ΔHreaction = 263.15 kJ/mol
Explanation:
The reaction is as follow:
OH + CF₂Cl₂ → HOF + CFCl₂
You need to calculate the enthalpy of reaction and for this it is necessary to know the standard enthalpies for each of the compounds. These enthalpies are as follows and can be found in your textbook or on the Internet.
ΔHreaction = ∑ΔHproducts - ∑ΔHreactants

Answer:
dude! it's static!
Explanation:
a dry cell can't function and is therefore static!
Answer:
204.5505 grams
2.5666 moles
Explanation:
For the first question, multiply 3.5 (# of moles) by 58.443 (g/mol for NaCl).
58.443 * 3.5
<em>I'll distribute 3.5 into 58.443.</em>
(3.5 * 50) + (3.5 * 8) + (3.5 * 0.4) + (3.5 * 0.04) + (3.5 * 0.003)
175 + 28 + 1.4 + 0.14 + 0.0105
203 + 1.4 + 0.14 + 0.0105
204.4 + 0.14 + 0.0105
204.54 + 0.0105
204.5505 grams
There are 204.5505 grams in 3.5 moles of NaCl.
For the second question, divide 150 (# of grams) by 58.443 (g/mol for NaCl). I'll convert both into fractions.
150/1 * 1000/58443
150000/58443
2.56660336 moles
2.5666 moles (rounded to 4 places to keep consistency with the first answer) are in 150 grams of NaCl.
Answer: It decreases because nonvolatile aluminum and chloride ions now occupy some of the volume of the system.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
So, when a non-volatile solute is added to a solvent then its molecules align at the surface of liquid. As a result, less number of solvent molecules will escape from the solution. Thus, there will be decrease in vapors and thus the vapor pressure decrease.
The relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.