11.86 years. Usually memorized as "12 years".
Answer:
The induced emf in the coil is 0.522 volts.
Explanation:
Given that,
Radius of the circular loop, r = 9.65 cm
It is placed with its plane perpendicular to a uniform 1.14 T magnetic field.
The radius of the loop starts to shrink at an instantaneous rate of 75.6 cm/s , 
Due to the shrinking of radius of the loop, an emf induced in it. It is given by :

So, the induced emf in the coil is 0.522 volts.
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity

Answer:
vector quantities are resolved into their component form (along the x and y-axis) before adding them. Let us assume that two vectors are
→
a
=
x
1
^
i
+
y
1
^
j
and
→
b
=
x
2
^
i
+
y
2
^
j
, we can find the sum of two vectors as follows.
→
a
+
→
b
=
x
1
^
i
+
y
1
^
j
+
x
2
^
i
+
y
2
^
j
=
(
x
1
+
x
2
)
^
i
+
(
y
1
+
y
2
)
^
j
The direction of the sum of the vectors (with positive x-axis) is,
θ
=
tan
−
1
(
y
1
+
y
2
x
1
+
x
2
)