Explanation:
- The applications are, hydraulic lift- to transmit equal pressure throughout a fluid.
- Hydraulic jack- used in the braking system of cars.
- use of a straw- to suck fluids, which goes because of air pressure.
<h3>The question simply asks, where pressure can be applied. There are many others, such as
<em><u>l</u></em><em><u>i</u></em><em><u>f</u></em><em><u>t</u></em><em><u> </u></em><em><u>p</u></em><em><u>u</u></em><em><u>m</u></em><em><u>p</u></em><em><u>.</u></em></h3>
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²