Answer:4.8 m/s^2
Explanation:
mass=10.5kg
Force=50.5N
Acceleration =force ➗ mass
Acceleration =50.5 ➗ 10.5
Acceleration =4.8 m/s^2
In other words, it would take Deep Space 1 more than 81,000 years to travel the 4.24 light-years between Earth and Proxima Centauri at its top speed of 56,000 km/h. In relation to human history, that would be more than 2,700 generations.
Nearly 40 trillion kilometers, or 4.4 light-years, separate us from Alpha Centauri. The NASA-Germany Helios probes, the fastest spacecraft to date to be launched into orbit, flew at a speed of 250,000 kilometers per hour. The probes would need 18,000 years to travel at such pace to arrive at the sun's nearest neighbor. The calculations reveal that it is almost impossible to reach the nearest star in a human lifetime, even with the most futuristic technologies.
Learn more about Light year here-
brainly.com/question/1302132
#SPJ4
Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm
Momentum = mass x velocity, so 500kg x 2m/s = 1000 kg m/s
Answer:
241.8 N.
Explanation:
The force on branch provides a reaction to the ape's weight force plus the centripetal force needed to keep the gibbon in a circular motion of radius 0.60 m.
Centripetal force = mv^2/r
F = mg + mv²/r
F = m(g + v²/r)
where,
m = mass
= 9 kg
g = acceleration due to gravity
= 9.8 m/s²
v = 3.2 m/s
r = 0.60 m
F = 9 * (9.8 + 3.2²/0.60)
= 241.8 N.