Answer:

Step-by-step explanation:
Rn(x) →0
f(x) = 10/x
a = -2
Taylor series for the function <em>f </em>at the number a is:

............ equation (1)
Now we will find the function <em>f </em> and all derivatives of the function <em>f</em> at a = -2
f(x) = 10/x f(-2) = 10/-2
f'(x) = -10/x² f'(-2) = -10/(-2)²
f"(x) = -10.2/x³ f"(-2) = -10.2/(-2)³
f"'(x) = -10.2.3/x⁴ f'"(-2) = -10.2.3/(-2)⁴
f""(x) = -10.2.3.4/x⁵ f""(-2) = -10.2.3.4/(-2)⁵
∴ The Taylor series for the function <em>f</em> at a = -4 means that we substitute the value of each function into equation (1)
So, we get
Or 
Answer: The answer is 2x + 7.
Explanation: First, we need to add the numbers:
9x + 3 – 7x + 4
9x + 7 - 7x
And finally, we combine like terms:
9x + 7 - 7x
2x + 7
Answer:
thatl be 5
Step-by-step explanation:
Answer:
![\begin{bmatrix}\mathrm{Solution:}\:&\:x\le \frac{1200}{499}\:\\ \:\mathrm{Decimal:}&\:x\le \:2.40480\dots \\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:\frac{1200}{499}]\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ax%5Cle%20%5Cfrac%7B1200%7D%7B499%7D%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BDecimal%3A%7D%26%5C%3Ax%5Cle%20%5C%3A2.40480%5Cdots%20%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%2C%5C%3A%5Cfrac%7B1200%7D%7B499%7D%5D%5Cend%7Bbmatrix%7D)
Step-by-step explanation:
