Answer:
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Explanation:
Let's consider the following molecular equation.
Mg(s) + SnSO₄(aq) ⇄ MgSO₄(aq) + Sn(s)
The full ionic equation includes al the ions and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) + SO₄²⁻(aq) ⇄ Mg²⁺(aq) + SO₄²⁻(aq) + Sn(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Answer:
frequency = 8.22 x 10¹⁴ s⁻¹
Explanation:
An electron's positional potential energy while in a given principle quantum energy level is given by Eₙ = - A/n² and A = constant = 2.18 x 10⁻¹⁸j. So to remove an electron from the valence level of Boron (₅B), energy need be added to promote the electron from n = 2 to n = ∞. That is, ΔE(ionization) = E(n=∞) - E(n=2) = (-A/(∞)²) - (-A/(2)²) = [2.18 x 10⁻¹⁸j/4] joules = 5.45 x 10⁻¹⁹ joules.
The frequency (f) of the wave ionization energy can then be determined from the expression ΔE(izn) = h·f; h = Planck's Constant = 6.63 x 10⁻³⁴j·s. That is:
ΔE(izn) = h·f => f = ΔE(izn)/h = 5.45 x 10⁻¹⁹ j/6.63 x 10⁻³⁴ j·s = 8.22 x 10¹⁴ s⁻¹
Answer:
controlled by the Arabs, who brought frankincense and myrrh by camel caravan from South Arabia.
Answer:
Any of the answers given will work
Explanation:
I literally just did it.