Answer:
21
Step-by-step explanation:
Answer:
two real, unequal roots
Step-by-step explanation:
This is a quadratic equation. The quadratic formula can be used to determine how many and what kind of roots may exist:
Find the discriminant, which is defined as b^2 - 4ac, if ax^2 + bx + c = 0. In this case, a = 1, b = -2 and c = -8, so that the discriminant value is
(-2)^2 - 4(1)(-8), or 4 + 32 = 36.
Because the discriminant is real and positive, we know for certain that we have two real, unequal roots
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
The original expression here might be (4x3) + (4x3). This is because the
distributive property simply moves around numbers, but will not change
the value of the equation, as in the question we are looking at here.