Answer:
the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
Step-by-step explanation:
From the diagram attached below; we can see a graphical representation showing the mid-segment of the trapezoid JKLM. The mid-segment is located at the line parallel to the sides of the trapezoid. However; these mid-segments are X and Y found on the line JK and LM respectively from the graph.
Using the expression for midpoints between two points to determine the exact length of the mid-segment ; we have:
![\mathbf{ YX = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D%20%7D)
![\mathbf{ YX = \sqrt{(8-5)^2+(8-2)^2} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B%288-5%29%5E2%2B%288-2%29%5E2%7D%20%7D)
![\mathbf{ YX = \sqrt{(3)^2+(6)^2} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B%283%29%5E2%2B%286%29%5E2%7D%20%7D)
![\mathbf{ YX = \sqrt{9+36} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B9%2B36%7D%20%7D)
![\mathbf{ YX = \sqrt{45} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B45%7D%20%7D)
![\mathbf{ YX = \sqrt{9*5} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%20%5Csqrt%7B9%2A5%7D%20%7D)
![\mathbf{ YX = 3 \sqrt{5} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20YX%20%3D%203%20%5Csqrt%7B5%7D%20%7D)
Thus; the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
First of all i think theres a mistakein the question;
i think it is sin θ =
![\frac{1}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20)
and then sin 30° =
![\frac{1}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20)
thus θ= 30°
65 total test items were on the test.
Because minimum wage is less in state B :)