1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
10

Make up your own problem and solve it.

Mathematics
1 answer:
Ahat [919]2 years ago
8 0

Answer:

= $ (x + 145 + 145)

= $ (x + 290)

So in this way end of every week her salary will increase by $ 145.

Step-by-step explanation:

You might be interested in
I need help on this question
MA_775_DIABLO [31]
How you solve it.

10+8+6+3+3+2+2=34
7 0
3 years ago
Read 2 more answers
Find the equation of the line in standard form containing a point P(-3, 3) and a slope m = -4/3
Ghella [55]

Answer:

4x+3y+3=0

Step-by-step explanation:

Equation of a line containing a point (x1,y1),

and a slope m is given by,

(y-y1)=m(x-x1)

Here, x1= -3 , y1= 3 , m= -4/3

Putting the values,

(y-3)=-4/3(x+3)

or,3(y-3)=-4(x+3)

or,3y-9=-4x-12

or,4x+3y+3=0 , is the required equation.

6 0
3 years ago
Read 2 more answers
Henry needs 2 pints of red paint and 3 pints of yellow
Readme [11.4K]

Answer:

henry needs 15 pints

Step-by-step explanation:

3+2=5

9 is 3 time 3

so to get the same orange henry must also

have 3 time 2 for red

9+6=15

4 0
4 years ago
Read 2 more answers
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
What is 6 1/8 minus 2 1/12
Bezzdna [24]

Answer:

4 1/24

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Ten times the number, x, is one-half the sum of the number and three
    7·2 answers
  • Alice collected donations of $50, $125, $10, $210, $50, $24, and $175 for charity. What is the mean of her collections?
    5·1 answer
  • 10 POINTS
    15·2 answers
  • Identify the exponent in the term –3x2. A. x B. 2 C. minus sign (–) D. 3
    5·2 answers
  • How much paint should the painter expect to use to paint a wall with an area of 256 square feet?
    10·1 answer
  • 3x-8=? what does this equal to please help
    14·2 answers
  • Felicia had $150,000 in a CD at Gravy Train Bank, which just failed. If the FDIC
    10·2 answers
  • Using distributive property What expression is equivalent to (p-q)(3)
    12·2 answers
  • Identify the segment bisector of QR. Then find QR. *
    10·1 answer
  • How many 150 ml bottles can be filled with 6 litres/
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!