Answer:
a. Planets move on elliptical orbits with the Sun at one focus.
Explanation:
Johannes Kepler was an astronomer who discovered that planets had elliptical orbits in the early 1600s (between 1609 and 1619).
The three (3) laws published by Kepler include;
I. The first law of planetary motion by Kepler states that, all the planets move in elliptical orbits around the Sun at a focus.
II. According to Kepler's second law of planetary motion, the speed of a planet is greatest when it is closest to the Sun.
Thus, the nearer (closer) a planet is to the Sun, the stronger would be the gravitational pull of the sun on the planet and consequently, the faster is the speed of the planet in terms motion.
III. The square of any planetary body's orbital period (P) is directly proportional to the cube of its orbit's semi-major axis.
Hence, one of Kepler's laws of planetary motion states that planets move on elliptical orbits with the Sun at one focus. This is his first law of planetary motion.
Answer:
20 ft
Explanation:
This is the length where the direct contact could be used as ground electrode
Well C is definitely one of the correct answers.
The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944
I think you would be using a topographic Map, So the answer should be A