1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
5

When is your kinetic energy the least when swinging on a park swing?

Physics
1 answer:
Afina-wow [57]2 years ago
7 0

Answer:

An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.

Explanation:

SO YOU HAVE THE LEAST KINETIC ENERGY AT THE HIGHEST POINT OF THE SWING WHEN IT'S NOT ACTIVE

You might be interested in
Animals often use more than one type of clue to help them to navigate. These clues include a sense of smell ('olfaction'') and r
Elina [12.6K]

An animal might use more than one type of clue to find its way due to change in the way one mechanism used to work.

Different animals have different senses heightened, that lets them use different mechanisms to navigate. Some of the mechanism include remembering landmarks, solar navigation, star navigation, magnetoreception, olfaction, gravity receptors etc.

For example, a bird using landmark to navigate will find it hard to navigate in the same way again if the landmark has been changed. So it has to depend on other senses such as olfaction or magnetoreception to navigate.

Therefore, an animal might use more than one type of clue to find its way due to change in the way one mechanism used to work.

To know more about Animal navigation

brainly.com/question/21475880

#SPJ1

7 0
1 year ago
A car and a truck start from rest at the same instant, with the car initially at some distance behind the truck. The truck has a
Svet_ta [14]

A) The car overtakes the truck after 7.56 s

B) Initial distance between car and truck: 37.1 m

C) Speed of the truck: 15.9 m/s, speed of the car: 25.7 m/s

D) See graph in attachment

Explanation:

A)

The truck starts from rest and has a constant acceleration, so its position at time t can be written as

x_t(t)=d+\frac{1}{2}a_tt^2

where

d is the initial distance between the truck and the car (the truck starts some distance ahead of the car)

a_t=2.10 m/s^2 is the acceleration of the truck

The car position instead it is given by the equation

x_c(t)=\frac{1}{2}a_ct^2

where

a_c=3.40 m/s^2 is the acceleration of the car

The car overtakes the truck when the truck has moved 60.0 m, so when

x_t(t') = d + 60

Therefore, solving the equation, we find the time t when  this occurs:

d+\frac{1}{2}a_t t'^2 = d+60\\\frac{1}{2}a_tt'^2=60\\t'=\sqrt{\frac{2\cdot 60}{a_t}}=\sqrt{\frac{120}{2.1}}=7.56 s

B)

In order to find the initial distance between the car and the truck (d), we have to calculate first the distance covered by the car during these 7.56 s. It is given by:

x_c(t')=\frac{1}{2}a_c t'^2=\frac{1}{2}(3.40)(7.56)^2=97.2 m

This means that after 7.56 s, when the car reaches the truck, the car has covered 97.2 m while the truck has covered 60 m. However, their positions are now equal, so we can write:

x_c(t')=x_t(t')

And by solving the equation, we find the value of d, the initial distance between car and truck:

\frac{1}{2}a_c t'^2 = d + \frac{1}{2}a_t t'^2\\d=\frac{1}{2}(a_c-a_t)t'^2 = \frac{1}{2}(3.40-2.10)(7.56)^2=37.1 m

C)

In order to find the speed of each vehicle, we use the following suvat equation:

v=u+at

where

u is the initial velocity

a is the acceleration

t is the time

For the truck, we have:

u = 0

a_t = 2.10 m/s^2

So its speed after t = 7.56 s is

v_t = 0+(2.10)(7.56)=15.9 m/s

For the car, we have

u = 0

a_c=3.40 m/s^2

So its speed after t = 7.56 s is

v_c=0+(3.40)(7.56)=25.7 m/s

D)

Find the graph required in attachment.

On the x-axis, it is represented the time in seconds. On the y-axis, it is represented the position in meters.

Both curves are in the shape of a parabola since the motion of both vehicles is an accelerated motion.

The curve that starts at -37.1 m is the curve representing the car: in fact, the car starts behind the truck by 37.1 m. The curve that starts from x = 0, t= 0 is that of the truck.

The two curves meets when t = 7.56 s: at that time, the two vehicles have reached the same position, and we see that occurs when x = 60 m, which means that this happens when the truck has covered 60 meters.

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
Airbags and safety belts can reduce injuries because they can
pashok25 [27]

Answer:

reduce the velocity of collision

5 0
2 years ago
A hard-boiled egg of mass 46.0 gg moves on the end of a spring with force constant 25.6 N/mN/m . The egg is released from rest a
soldi70 [24.7K]

Answer:

0.022kg/s

Explanation:

We are given that

Mass of boiled egg=46 g=\frac{46}{1000} kg=0.046 kg

1kg=1000 g

Constant force=F=25.6 N/m

Initial displacement=A_1=0.296 m

Final displacement=A_2=0.12 m

Time=t=4.55 s

Damping force=F_x=-bv_x

We have to find the  magnitude of damping constant b.

We know that the displacement of the oscillator under damping motion is given by

x=Ae^{-\frac{b}{2m}t}cos(w't+\phi)

For maximum displacement cos(w't+\phi)=1

Therefore , x=A_2

Substitute the values

A_2=A_1e^{-\frac{-b}{2m}t}

e^{-\frac{b}{2m}t}=\frac{A_2}{A_1}

-\frac{b}{2m}t=ln\frac{A_2}{A_1}

lnx=y\implies x=e^y

Substitute the values

-\frac{b}{2\times 0.046}\times 4.55=ln\frac{0.12}{0.296}

\frac{2\times 0.046}{4.55b}=ln\frac{0.296}{0.12}

\frac{2\times 0.046}{4.55}=0.9b

b=\frac{2\times 0.46}{4.55\times 0.9}=0.022kg/s

Hence,the  magnitude of damping constant b=0.022kg/s

3 0
2 years ago
The change in momentum of an object is equal to the ____________ that acts on it.
meriva

Answer : The change in momentum of an object is equal to the impulse that acts on it.

Explanation :

Change in momentum : The change in momentum of an object is the product of the mass and the change in velocity of an object.

The formula of change in momentum is,

\Delta p=m\times \Delta v

Impulse : An impulse of an object is the product of the force applied on an object and the change in time. Impulse is also equivalent to the change in momentum of  an object.

J=F\times \Delta t

Proof :

J=F\times \Delta t\\\\J=(m\times a)\times \Delta t\\\\J=m\times (a\times \Delta t)\\\\J=m\times \Delta v=\Delta p

Hence, the change in momentum of an object is equal to the impulse that acts on it.

3 0
2 years ago
Read 2 more answers
Other questions:
  • A 10 kg body is suspended by a rope is pulled
    14·1 answer
  • There is a girl pushing on a large stone sphere. The sphere has a mass of 8200 kgand a radius of 90 cm and floats with nearly ze
    15·1 answer
  • Please help<br> Quickly!!!..
    6·1 answer
  • Can we use a copper wire instead of eureka wire
    11·1 answer
  • The Thermosphere contains a layer of charged particles called the ________________ which makes commucation by _________________
    7·1 answer
  • Energy can transform between different types. For each of the following examples, identify two energy transformations and the ty
    13·1 answer
  • Một electron di chuyển theo đường tròn vuông góc với từ trường đều 1mT. Moment động lượng của electron đối với tâm vòng tròn là
    9·1 answer
  • name the metal which form the filament of an electric bulb. what is the function of contact wire in bulb.​
    5·2 answers
  • If a motorcycle covers 5km in 10 minutes , how far does it move in 1 second ?​
    7·1 answer
  • A ball is launched straight up with initial speed of 30.0 m/s. What is the ball's velocity when it comes back to its original po
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!