1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
8

Describe the mechanical energy of a roller coaster car immediately before it begins traveling down a long track

Physics
1 answer:
GrogVix [38]3 years ago
5 0
At the top of the hill, the cars possess a large quantity of potential energy. Potential energy - the energy of vertical position - is dependent upon the mass of the object and the height of the object. The car's large quantity of potential energy is due to the fact that they are elevated to a large height above the ground. As the cars descend the first drop they lose much of this potential energy in accord with their loss of height. The cars subsequently gain kinetic energy. Kinetic energy - the energy of motion - is dependent upon the mass of the object and the speed of the object. The train of coaster cars speeds up as they lose height. Thus, their original potential energy (due to their large height) is transformed into kinetic energy (revealed by their high speeds). As the ride continues, the train of cars are continuously losing and gaining height. Each gain in height corresponds to the loss of speed as kinetic energy (due to speed) is transformed into potential energy (due to height). Each loss in height corresponds to a gain of speed as potential energy (due to height) is transformed into kinetic energy (due to speed). A roller coaster ride also illustrates the work and energy relationship. The work done by external forces is capable of changing the total amount of mechanical energy from an initial value to some final value. The amount of work done by the external forces upon the object is equal to the amount of change in the total mechanical energy of the object. The relationship is often stated in the form of the following mathematical equation.

KEinitial + PEinitial + Wexternal = KEfinal + PEfinal

The left side of the equation includes the total mechanical energy (KEinitial + PEinitial) for the initial state of the object plus the work done on the object by external forces (Wexternal) while the right side of the equation includes the total mechanical energy (KEfinal + PEfinal) for the final state of the object.

Once a roller coaster has reached its initial summit and begins its descent through loops, turns and smaller hills, the only forces acting upon the coaster cars are the force of gravity, the normal force and dissipative forces such as air resistance. The force of gravity is an internal force and thus any work done by it does not change the total mechanical energy of the train of cars. The normal force of the track pushing up on the cars is an external force. However, it is at all times directed perpendicular to the motion of the cars and thus is incapable of doing any work upon the train of cars. Finally, the air resistance force is capable of doing work upon the cars and thus draining a small amount of energy from the total mechanical energy which the cars possess. However, due to the complexity of this force and its small contribution to the large quantity of energy possessed by the cars, it is often neglected. By neglecting the influence of air resistance, it can be said that the total mechanical energy of the train of cars is conserved during the ride. That is to say, the total amount of mechanical energy (kinetic plus potential) possessed by the cars is the same throughout the ride. Energy is neither gained nor lost, only transformed from kinetic energy to potential energy and vice versa.

The conservation of mechanical energy by the coaster car in the above animation can be studied using a calculator. At each point in the ride, the kinetic and potential energies can be calculated using the following equations.

<span> KE = 0.5 * mass * (speed)^2 PE = mass * g * height</span>

If the acceleration of gravity value of 9.8 m/s/s is used along with an estimated mass of the coaster car (say 500 kg), the kinetic energy and potential energy and total mechanical energy can be determined

You might be interested in
A monkey has a bit of a heavy for on the gas pedal. As soon as the light turns green the monkey pushes the gas pedal to the floo
Andrei [34K]

Answer:

s=6.86m/s^2

Explanation:

Hello,

In this case, considering that the acceleration is computed as follows:

a=\frac{v_{final}-v_{initial}}{t}

Whereas the final velocity is 28.82 m/s, the initial one is 0 m/s and the time is 4.2 s. Thus, the acceleration turns out:

a=\frac{28.82m/s-0m/s}{4.2s}\\ \\s=6.86m/s^2

Regards.

3 0
2 years ago
Is position a base or derived quantity?
amid [387]

Position is measured in meters (m), so it is a base quantity.

<h3>What is base quantity?</h3>

A base or fundamental  quantity is a physical quantity, in which other quantities are derived from.

Example of fundamental quantities;

  • Mass
  • Length (position)
  • Time
  • Temperature
  • Amount of substance

<h3>What is a derived quantity?</h3>

Derived quantities are those quantities obtained or expressed from fundamental quantities.

Example of derived quantities;

  • Speed
  • Acceleration
  • Volume
  • Area
  • Density, etc

Thus, we can conclude that position measured in meters (m) is a base quantity.

Learn more about base quantities here: brainly.com/question/14480063

#SPJ1

8 0
1 year ago
Which solute will dissolve first in the illustration?
pentagon [3]
B explanation : they are both filled to the same pint
4 0
2 years ago
When he drove home his car broke down it wasnt due to a problem with the wheels it was the?
Goshia [24]
It would have to be the engine
3 0
2 years ago
Read 2 more answers
a tractor pulls a wagon from rest with a constant force of 700 N eventually giving the wagon a speed of 20 km/h. how much work i
Semenov [28]


Work = Force × distance

We need to calculate distance travelled.

20km/hr = 20,000m / 60min  → 333.3m/ min

333.3 × 3.5 min = 1,166.6 meters travelled

Force = 700 N  and distance = 1,166.6 m

Work done is  700 N × 1,666.6 =  816,620 Nm

Power output = work /time

Power output is 816, 620 Nm / (3.5 × 60sec) →816, 620 / 210 = 3,888.7

Power output is 3,888.7 Watts.

Power output can also be expressed in joules per second so it is also correct to  say work done is 3,888.7 J/s

5 0
3 years ago
Other questions:
  • Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
    5·1 answer
  • the weightlessness that an astronaut feels in space is due to increased air resistance A. True B. False
    5·1 answer
  • Newton's law of universal gravitation is represented by f = g mm r2 where f is the gravitational force, m and m are masses, and
    7·1 answer
  • You and your dog are walking along a pond. Your dog looks into the still water and is startled to see its reflection. Which phen
    13·1 answer
  • The electromagnetic wave that CT scans are based on is called
    9·2 answers
  • An object moves with a constant speed of 20 m/s on a circular track of radius 100 m. What is the tangential acceleration of the
    13·1 answer
  • HELP ASAP !!
    11·2 answers
  • Mention &amp; reasons why the ability to adapt to change is
    15·1 answer
  • Can u please help me
    15·1 answer
  • 1. Is the image projected on a movie screen real or virtual? What about the image of yourself seen in a bathroom mirror?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!