Answer:
Explanation:
We know that , If the frictional force on a system is zero , then the total energy of a system will be conserved.
By using energy conservation
KE₁ + U₁ = KE₂ + U₂
KE₁=Kinetic energy at location 1
U₁ =Potential energy at location 1
KE₂=Kinetic energy at location 2
U₂=Potential energy at location 2
Therefore, Raymond is thinking in a right way.
Answer:
The fuse must be connected between the device and the power intake source.
Explanation:
A fuse is a protective component of electrical appliances that is designed to be sensitive to a particular range of electric current
The fuse is made of a thing metal strip with a known melting point. Once current abive its carrying capacity flows through it, large heat is generated in the metal strip which melts it and causes the metal strip to cut int two protecting the device from the power spike.
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:
where is the coefficient of friction = 0.02
R = Normal reaction of the load = = =
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.
F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N