All of the following
involve waves of electromagnetic energy except the rumble of thunder during a storm.
Electromagnetic waves<span> <span>are
used to transmit long/short/FM wavelength radio </span>waves, and TV/telephone/wireless signals or energies. They are
also responsible for transmiting energy in the form of microwaves, infrared radiation<span> (IR), visible light (VIS),
ultraviolet light (UV), X-rays, and gamma rays.</span></span>
The correct answer between all
the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer: The correct answer is option C.
Explanation:
Weight = Mass × Acceleration
Let the mass of the space probe be m
Acceleration due to gravity on the earth = g
Weight of the space probe on earth = W

Acceleration due to gravity on the Jupiter = g' = 2.5g
Weight of the space probe on earth = W'



The weight of the space probe on the Jupiter will be 2.5 times the weight of the space probe on earth.
Hence, the correct answer is option C.
Answer:
Protons and neutrons are heavy, Electrons are extremely light
Explanation:
Protons and neutrons are heavier than electrons and reside in the nucleus at the center of the atom. Electrons are extremely lightweight and exist in a cloud orbiting the nucleus.
Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m