Answer: 53x^7
Step-by-step explanation:
Subtracting a negative is like adding.
Answer:
77
Step-by-step explanation:
Firstly, we need to calculate the total score of the junior students and the total score of the senior students.
The total score of the junior students is 35 * 80 = 2,800
The total score of the senior students is 15 * 70 = 1050
The total score is thus 2,800 + 1,050 = 3,850
The average score of the 50 students is thus 3,850/50 which equals 77
X = 4, -2 that should be the roots(zeros) of the function.
Answer:
We have the function:
r = -3 + 4*cos(θ)
And we want to find the value of θ where we have the maximum value of r.
For this, we can see that the cosine function has a positive coeficient, so when the cosine function has a maximum, also does the value of r.
We know that the meaximum value of the cosine is 1, and it happens when:
θ = 2n*pi, for any integer value of n.
Then the answer is θ = 2n*pi, in this point we have:
r = -3 + 4*cos (2n*pi) = -3 + 4 = 1
The maximum value of r is 7
(while you may have a biger, in magnitude, value for r if you select the negative solutions for the cosine, you need to remember that the radius must be always a positive number)
if the diameter of a circle is 15, its radius is half that or 7.5.
![\bf \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=7.5 \end{cases} A=\pi (7.5)^2\implies A=56.25\pi \implies \stackrel{\pi =3.14}{A=176.625}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D7.5%20%5Cend%7Bcases%7D%20A%3D%5Cpi%20%287.5%29%5E2%5Cimplies%20A%3D56.25%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7BA%3D176.625%7D%20)