Yes, the atoms of the elements do have different masses but the same volume
Answer:
0.26×10²³ molecules
Explanation:
Given data:
Volume of gas = 1.264 L
Temperature = 168°C
Pressure = 946.6 torr
Number of molecules of gas = ?
Solution:
Temperature = 168°C (168+273= 441 K)
Pressure = 946.6 torr (946.6/760 = 1.25 atm)
Now we will determine the number of moles.
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.25 atm ×1.264 L / 0.0821 atm.L/ mol.K ×441 K
n = 1.58 /36.21 /mol
n = 0.044 mol
Now we will calculate the number of molecules by using Avogadro number.
1 mol = 6.022×10²³ molecules
0.044 mol × 6.022×10²³ molecules/ 1mol
0.26×10²³ molecules
Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:

The formula for water is H2O so there would have to be two Hyrdogens and one oxygen. Therefore it would be 4g of Hydrogen and 16g of Oxygen leaving you with 20g.
The answer is D.
Hope this helps :) ~
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.