Answer:
Step-by-step explanation:
This question is attached to:
Answer:
- <u>The correct statement is the first one: </u><u><em>The number of blue-eyed students in Mr. Garcia's class is 2 standard deviations to the right of the mean</em></u><em> </em>
<em />
Explanation:
To calculate how many<em> standard deviations</em> a particular value in a group is from the mean, you can use the z-score:

Where:
is the number of standard deviations the value of x is from the mean
is the mean
is the standard deviation
Substitute in the formula:

Which means that <em>the number of blue-eyed students in Mr. Garcia's class is 2 standard deviations</em> above the mean.
Above the mean is the same that to the right of the mean, because the in the normal standard probability graph the central value is Z = 0 (the z-score of the mean value is 0), the positive values are to the right of the central value, and the negative values are to the left of the central value.
Therefore, the correct statement is the first one: <em>The number of blue-eyed students in Mr. Garcia's class is 2 standard deviations to the right of the mean, </em>
Here is a set of 5 numbers that give a mean of 17.25.
Answer:
14, 11, 16, 21, 24.25
Answer:
And we can find this probability with this difference:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the amount of cofee shops of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability with this difference: