Answer: the answer should be 7
Step-by-step explanation: V=πr2h
3=π·1.52·3
3≈7.06858
you can find the radius for the area of the base 7 by dividing by
like such 7/3.1459 the squared because remember its in r2 form which give you 1.5 then plug this in for one of two ways to solve A·
1/3 or V=πr2h
There are exactly 360° in a circle, so the angle measure would be 3/360 * 360 = 3°.
Answer:
0.0668 = 6.68% probability that the worker earns more than $8.00
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The average hourly wage of workers at a fast food restaurant is $7.25/hr with a standard deviation of $0.50.
This means that 
If a worker at this fast food restaurant is selected at random, what is the probability that the worker earns more than $8.00?
This is 1 subtracted by the pvalue of Z when X = 8. So



has a pvalue of 0.9332
1 - 0.9332 = 0.0668
0.0668 = 6.68% probability that the worker earns more than $8.00