These problems are called systems of equations. Basically you have two linear equations and you need to find the values for x and y. In other words, all these equation are lines and our answer will be the exact point that the pair of lines intersect. For example, if we get x=1 and y=2 the lines will intersect at point (1,2). Now that you have some background knowledge here comes the tricks and tactics kid.
We know that we can solve one variable equation easily. For example...
x+1=2
x=1 obviously
Cause we have two variables x and y it is not possible to find a solution. For example, in the equation x+y=10, x=1 when y=9 and x=2 when y=8. There is not correct answer.
So what can we do? We have to make a two variable equation into a one variable equation.
There are two ways to do this: substitution and elimination. I will create a sample problem and then solve it using both methods.
x+y=2
2y-y=1
3)
-3x-5y=-7 -----> -12x-20y=-28
-4x-3y=-2 ------> -12x-9y=-6
-12x-20y=-28
-(-12x-9y=-6)
---------------------
-11y=-22
y=2
-3x-5(2)=-7
-3x=3
x=-1
4) 8x+4y=12 ---> 24x+12y=36
7x+3y=10 ---> 28x+12y=40
28x+12y=40
-(24x+12y=36)
---------------------
4x=4
x=1
8(1)+4y=12
4y=4
y=1
5) 4x+3y=-7
-2x-5y=7 ----> -4x-10y=14
4x+3y=-7
+(-4x-10y=14)
-------------------
-7y=7
y=-1
4x+3(-1)=-7
4x=-4
x=-1
6) 8x-3y=-9 ---> 32x-12y=-36
5x+4y=12 ---> 15x+12y=36
32x-12y=-36
+(15x+12y=36)
--------------------
47x=0
x=0
8(0)-3y=-9
-3y=-9
y=3
7)-3x+5y=-2
2x-2y=1 ---> x-y=1/2 ----> x=y+1/2
-3(y+1/2)+5y=-2
-3y-1.5+5y=-2
2y=-0.5
y=0.25
2x-2(0.25)=1
2x=1.5
x=0.75
Answer:
D. 
Step-by-step explanation:
Consider the set

This set consists of four ordered pairs.
The first numbers in these pairs are
These numbers are integer numbers (not natural, because -3 is negative).
The second numbers in these pairs are
These numbers are integer numbers too (not natural, because -2 is negative).
Options contain only natural and real sets, so, the first and the second numbers are real numbers and

Logbx+logby-logbz
=logb(x*y)/z if b is the base of log.
There are two properties that you can apply to get the correct answer.
logb(x*y)=logbx+logby if b is the base of log.
logb(x/y)=logbx-logby if b is the base of log, so the correct answer for logbx+logby-logbz=logb(x*y)/z. Hope it help!
Answer:
24 i thik?
Step-by-step explanation:

here's the solution,
=》

=》

=》

=》

=》

=》

hence, correct option is C.