Answer: 1.39 s
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the length the steel wire streches (taking into account 1mm=0.001 m)
is the length of the steel wire before being streched
is the force due gravity (the weight) acting on the pendulum with mass 
is the transversal area of the wire
is the Young modulus for steel
is the period of the pendulum
is the acceleration due gravity
Knowing this, let's begin by finding
:
(3)
Where
is the diameter of the wire
(4)
(5)
Knowing this area we can isolate
from (1):
(6)
And substitute
in (2):
(7)
(8)
Finally:

Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

where
are charges,
is the distance between them and k is the coulomb constant.
case 1:

case 2

case 3:

Comparing the 3 cases:
The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.
Answer:
When Magenta light is shown on a green surface, it looks black.
Explanation:
It absorbs the Magenta light and also reflects none of the light.
Density is mass divided by volume. rho=m/v. So, v=m/rho. In frank's case this is 80/8 = 10 cm^3.
Answer:
physics, escape velocity is the minimum speed needed for an object to escape from the gravitational influence of a massive body. The escape velocity from Earth is about 11.186 km/s (6.951 mi/s; 40,270 km/h; 25,020 mph)[1] at the surface. ... [2] Speeds higher than escape velocity have a positive speed at infinity.