Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:
![\frac{\triangle m}{m}=0.004998=0.49985\%](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctriangle%20m%7D%7Bm%7D%3D0.004998%3D0.49985%5C%25)
Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=![\frac{1}{2}mv^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
![K.E\ of\ Swans=\frac{1}{2} *10*(20)^2=2000\ Joules](https://tex.z-dn.net/?f=K.E%5C%20of%5C%20Swans%3D%5Cfrac%7B1%7D%7B2%7D%20%2A10%2A%2820%29%5E2%3D2000%5C%20Joules)
Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=![\frac{1}{2}mv^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
Now, the relation between energies ratio and masses is:
![\frac{\triangle E}{E}=\frac{\triangle m}{2m}v^2](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctriangle%20E%7D%7BE%7D%3D%5Cfrac%7B%5Ctriangle%20m%7D%7B2m%7Dv%5E2)
![\frac{\triangle m}{m}=\frac{2}{v^2} *\frac{\triangle E}{E}\\\frac{\triangle m}{m}=\frac{2}{20^2} *0.99977](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctriangle%20m%7D%7Bm%7D%3D%5Cfrac%7B2%7D%7Bv%5E2%7D%20%2A%5Cfrac%7B%5Ctriangle%20E%7D%7BE%7D%5C%5C%5Cfrac%7B%5Ctriangle%20m%7D%7Bm%7D%3D%5Cfrac%7B2%7D%7B20%5E2%7D%20%2A0.99977)
![\frac{\triangle m}{m}=0.004998=0.49985\%](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctriangle%20m%7D%7Bm%7D%3D0.004998%3D0.49985%5C%25)
Answer:
To find the acceleration of the object we have to apply Newton second law of motion that is F = mass × acceleration.
Explanation:
Given ,
F = 130N
M = 24kg
A = ?
F = m× a
then ,
130N = 24kg ×a
a = 130/24 = 5 m/s.
V: velocity of wave
f: frequency
L: wavelenght
v = fL => L = v/f => L = (3x10^8)/(900x10^3) => L = 3.33 x 10^2m
Answer:
(a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Explanation:
Given that,
Angle of incidence = 30.0°
Index of reflection of glass = 1.52
(a). We need to calculate the angle of refraction for the ray inside the glass
Using snell's law
![\dfrac{\sin i}{\sin r}=\mu](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csin%20i%7D%7B%5Csin%20r%7D%3D%5Cmu)
![\sin r=\dfrac{\sin i}{\mu}](https://tex.z-dn.net/?f=%5Csin%20r%3D%5Cdfrac%7B%5Csin%20i%7D%7B%5Cmu%7D)
Put the value into the formula
![\sin r=\dfrac{\sin 30}{1.52}](https://tex.z-dn.net/?f=%5Csin%20r%3D%5Cdfrac%7B%5Csin%2030%7D%7B1.52%7D)
![r=\sin^{-1}(0.329)](https://tex.z-dn.net/?f=r%3D%5Csin%5E%7B-1%7D%280.329%29)
![r=19.26^{\circ}](https://tex.z-dn.net/?f=r%3D19.26%5E%7B%5Ccirc%7D)
(b). We know that,
The incident ray and emerging ray is equal then the ray will be parallel.
We need to prove that the rays in air on either side of the glass are parallel to each other
Using formula for emerging ray
![\dfrac{\sin e}{\sin r}=\mu](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csin%20e%7D%7B%5Csin%20r%7D%3D%5Cmu)
![\sin e=\sin r\times \mu](https://tex.z-dn.net/?f=%5Csin%20e%3D%5Csin%20r%5Ctimes%20%5Cmu)
Put the value into the formula
![\sin e=0.3289\times 1.52](https://tex.z-dn.net/?f=%5Csin%20e%3D0.3289%5Ctimes%201.52)
![e=\sin^{-1}(0.499)](https://tex.z-dn.net/?f=e%3D%5Csin%5E%7B-1%7D%280.499%29)
![e=29.9\approx 30^{\circ}](https://tex.z-dn.net/?f=e%3D29.9%5Capprox%2030%5E%7B%5Ccirc%7D)
So, ![\sin i=\sin e](https://tex.z-dn.net/?f=%5Csin%20i%3D%5Csin%20e)
This is proved.
Hence, (a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Answer:
The net gravitational force on the mass is ![1.27\times 10^{-5}](https://tex.z-dn.net/?f=1.27%5Ctimes%2010%5E%7B-5%7D)
Explanation:
We have by Newton's law of gravity the force of attraction between masses ![m_{1},m_{2}](https://tex.z-dn.net/?f=m_%7B1%7D%2Cm_%7B2%7D)
![F_{att}=G\frac{m_{1}m_{2}}{r^{2}}](https://tex.z-dn.net/?f=F_%7Batt%7D%3DG%5Cfrac%7Bm_%7B1%7Dm_%7B2%7D%7D%7Br%5E%7B2%7D%7D)
Applying vales we get
Force of attraction between 135 kg mass and 38 kg mass is
![F_{1}=6.67\times 10^{-11}\frac{135\times 38}{(0.25)^{2}}\\\\F_{1}=5.47\times 10^{-6}N](https://tex.z-dn.net/?f=F_%7B1%7D%3D6.67%5Ctimes%2010%5E%7B-11%7D%5Cfrac%7B135%5Ctimes%2038%7D%7B%280.25%29%5E%7B2%7D%7D%5C%5C%5C%5CF_%7B1%7D%3D5.47%5Ctimes%2010%5E%7B-6%7DN)
Force of attraction between 435 kg mass and 38 kg mass is
![F_{2}=6.67\times 10^{-11}\frac{435\times 38}{(0.25)^{2}}\\\\F_{2}=1.76\times 10^{-5}N](https://tex.z-dn.net/?f=F_%7B2%7D%3D6.67%5Ctimes%2010%5E%7B-11%7D%5Cfrac%7B435%5Ctimes%2038%7D%7B%280.25%29%5E%7B2%7D%7D%5C%5C%5C%5CF_%7B2%7D%3D1.76%5Ctimes%2010%5E%7B-5%7DN)
Thus the net force on mass 38.0 kg is ![F_{2}-F_{1}=1.76\times 10^{-5}-5.47\times 10^{-6}\\\\F_{2}-F_{1}=1.27\times 10^{-5}](https://tex.z-dn.net/?f=F_%7B2%7D-F_%7B1%7D%3D1.76%5Ctimes%2010%5E%7B-5%7D-5.47%5Ctimes%2010%5E%7B-6%7D%5C%5C%5C%5CF_%7B2%7D-F_%7B1%7D%3D1.27%5Ctimes%2010%5E%7B-5%7D)