Answer:
3.14946 rad/s
Explanation:
= Intial moment of inertia
= Final moment of inertia
= Initial angular velocity
= Final angular velocity = 

In this system the angular momentum is conserved

The angular velocity when the diver left the board is 3.14946 rad/s
<span>Multiplexing is the process of combining numerous signal of data or sound on to a single carrier like an optical fiber by using different wavelengths. The type of multiplexing that is defined by wavelength instead of frequency is CWDM which is also known as Coarse Wavelength Division Multiplexing.</span>
Answer:It is an Endothermic reaction
Explanation:
Exothermic reaction
An exothermic reaction is one that releases energy in the form of heat or light.
Endothermic reaction
An endothermic reaction is one that absorbs energy in the form of heat or light.
If the resistance in a circuit remains constant and the current increases, then the power will increase. <em>(A)</em>
In fact, it'll increase as fast as the <em><u>square</u></em> of the current ! Like, if the current somehow increases to 3 times as much, the circuit will start using <u><em>9 times</em></u> as much power as it did before.
So, the frequency of that light approximately 
<h3>Introduction</h3>
Hi ! Here I will help you to discuss the relationship between frequency and wavelength, with the velocity constant of electromagnetic waves in a vacuum. We all know that regardless of the type of electromagnetic wave, it will have the same velocity as the speed of light (light is part of electromagnetic wave too), which is 300,000 km/s or
m/s. As a result of this constant property, <u>the shorter the wavelength, the greater the value of the electromagnetic wave frequency</u>. This relationship can also be expressed in this equation:

With the following condition :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength (m)- f = electromagnetic wave frequency (Hz)
<h3>Problem Solving</h3>
We know that :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength =
m.
What was asked :
- f = electromagnetic wave frequency = ... Hz
Step by step :






<h3>Conclusion :</h3>
So, the frequency of that light approximately 
<h3>See More :</h3>