Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.
Answer:
- The molarity of the student's sodium hydroxide solution is 0.0219 M
Explanation:
<u>1) Chemical reaction.</u>
a) Kind of reaction: neutralization
b) General form: acid + base → salt + water
c) Word equation:
- sodium hydroxide + oxalic acid → sodium oxalate + water
d) Chemical equation:
- NaOH + H₂C₂O₄ → Na₂C₂O₄ + H₂O
b) Balanced chemical equation:
- 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O
<u>2) Mole ratio</u>
- 2mol Na OH : 1 mol H₂C₂O₄ :1 mol Na₂C₂O₄ : 2 mol H₂O
<u>3) Starting amount of oxalic acid</u>
- mass = 28 mg = 0.028 g
- molar mass = 90.03 g/mol
- Convert mass in grams to number of moles, n:
n = mass in grams / molar mass = 0.028 g / 90.03 g/mol = 0.000311 mol
<u>4) Titration</u>
- Volume of base: 28.4 mL = 0.0248 liter
- Concentration of base: x (unknwon)
- Number of moles of acid: 2.52 mol (calculated above)
- Proportion using the theoretical mole ratio (2mol Na OH : 1 mol H₂C₂O₄)

That means that there are 0.000622 moles of NaOH (solute)
<u>5) Molarity of NaOH solution</u>
- M = n / V (liter) = 0.000622 mol / 0.0284 liter = 0.0219 M
That is the correct number using <em>three signficant figures</em>, such as the starting data are reported.
The answer is AIM NOT POSTIVE