Hello There!
The law of conservation of mass states that <em>Matter/substances/energy can not be created or destroyed, it can only be transferred from state to state.</em>
I think it's true
I'm not really sure
Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
1) 
The capacitance of a parallel-plate capacitor is given by:

where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is

so the area is

While the separation between the plates is

So the capacitance is

And now we can find the energy stored,which is given by:

2) 0.71 J/m^3
The magnitude of the electric field is given by

and the energy density of the electric field is given by

and using
, we find
