Answer:
- Moisture/ water content w = 26%
Explanation:
- Initial mass of saturated soil w1 = mass of soil - weight of container
= 113.27 g - 49.31 g = 63.96 g
- Final mass of soil after oven w2 = mass of soil - weight of container
= 100.06 g - 49.31 g = 50.75
Moisture /water content, w =
=
= 0.26 = 26%
Void ratio = water content X specific gravity of solid
= 0.26 X 2.80 =0.728
Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K
The correct question;
An object of irregular shape has a characteristic length of L = 1 m and is maintained at a uniform surface temperature of Ts = 400 K. When placed in atmospheric air at a temperature of Tinfinity = 300 K and moving with a velocity of V = 100 m/s, the average heat flux from the surface to the air is 20,000 W/m² If a second object of the same shape, but with a characteristic length of L = 5 m, is maintained at a surface temperature of Ts = 400 K and is placed in atmospheric air at Too = 300 K, what will the value of the average convection coefficient be if the air velocity is V = 20 m/s?
Answer:
h'_2 = 40 W/K.m²
Explanation:
We are given;
L1 = 1m
L2 = 5m
T_s = 400 K
T_(∞) = 300 K
V = 100 m/s
q = 20,000 W/m²
Both objects have the same shape and density and thus their reynolds number will be the same.
So,
Re_L1 = Re_L2
Thus, V1•L1/v1 = V2•L2/v2
Hence,
(h'_1•L1)/k1 = (h'_2•L2)/k2
Where h'_1 and h'_2 are convection coefficients
Since k1 = k2, thus, we now have;
h'_2 = (h'_1(L1/L2)) = [q/(T_s - T_(∞))]• (L1/L2)
Thus,
h'_2 = [20,000/(400 - 300)]•(1/5)
h'_2 = 40 W/K.m²