Answer:
Timing Diagrams 15 pts. A 10 MHz clock that generates a 0 to 5V pulse train with a 30% duty cycle is connected to input X of a two input OR gate that has a 20nS propagation delay. The clock also goes to an inverter with a 10 ns propagation delay. The output of the inverter goes to the Y input of the OR gate. a) Draw the circuit. 2 pts. b) Plot the output of the clock for two cycles. Show times and voltages. 5 pts. c) On the same page as part (b) plot the output of the inverter. Show times and voltages. 3 pts. d) On the same page as parts (b & c) plot the output of the OR gate. Show times and voltages. 5 pts.
<h2>
Answer:</h2>
7532V
<h2>
Explanation:</h2>
For a given transformer, the ratio of the number of turns in its primary coil (
) to the number of turns in its secondary coil (
) is equal to the ratio of the input voltage (
) to the output voltage (
) of the transformer. i.e
=
----------------(i)
<em>From the question;</em>
= number of turns in the primary coil = 8 turns
= number of turns in the secondary coil = 515 turns
= input voltage = 117V
<em>Substitute these values into equation (i) as follows;</em>
= 
<em>Solve for </em>
<em>;</em>
= 117 x 515 / 8
= 7532V
Therefore, the output voltage (in V) of the transformer is 7532